sgGWR package
Subpackages
- sgGWR.optimizers package
- Submodules
- sgGWR.optimizers.existings module
- sgGWR.optimizers.existings_numpy module
- sgGWR.optimizers.golden module
- sgGWR.optimizers.second module
- sgGWR.optimizers.sg module
- sgGWR.optimizers.sg_numpy module
- sgGWR.optimizers.vr module
- Module contents
Submodules
sgGWR.kernels module
- class sgGWR.kernels.Biweight(params)
Bases:
_scaledKernel
- class sgGWR.kernels.Epanechnikov(params)
Bases:
_scaledKernel
- class sgGWR.kernels.Exponential(params)
Bases:
_scaledKernel
- class sgGWR.kernels.Gaussian(params)
Bases:
_scaledKernel
- class sgGWR.kernels.LinearMultiscale(sites, params=Array([1.e-04, 1.e+00], dtype=float32), base_kernel=None, n_poly=4, n_neighbour=100)
Bases:
_KDTreeKernel
- dk(x1, x2, params)
- k(x1, x2, params)
- class sgGWR.kernels.Triangular(params)
Bases:
_scaledKernel
- class sgGWR.kernels.stBiweight(params)
Bases:
_scaledSTKernel
- class sgGWR.kernels.stEpanechnikov(params)
Bases:
_scaledSTKernel
- class sgGWR.kernels.stExponential(params)
Bases:
_scaledSTKernel
- class sgGWR.kernels.stGaussian(params)
Bases:
_scaledSTKernel
- class sgGWR.kernels.stTriangular(params)
Bases:
_scaledSTKernel
sgGWR.models module
- class sgGWR.models.GWR(y, X, sites, kernel=<sgGWR.kernels.Gaussian object>)
Bases:
GWR_Ridge
- grad_params_aicc(params, idx=None, sigma2_type=0)
- grad_params_loocv(params, idx=None)
- loocv_GN(params, idx=None)
- loocv_loss(params, idx=None)
- set_params(unconstrained, transform=True)
- unconstrained_GN(x, idx=None)
- unconstrained_grad(x, idx=None)
- unconstrained_loss(x, idx=None)
- class sgGWR.models.GWR_Ridge(y, X, sites, kernel=<sgGWR.kernels.Gaussian object>, penalty=0.01)
Bases:
object
- AICc(params=None, sigma2_type=0)
Fast Evaluation of AICc
reference. Li, Z., Fotheringham, A. S., Li, W., & Oshan, T. (2019). Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations. International Journal of Geographical Information Science, 33(1), 155–175.
- get_beta(s)
- grad_params_aicc(params, penalty, idx=None, sigma2_type=0)
- grad_params_loocv(params, penalty, idx=None)
- grad_penalty_aicc(params, penalty, idx=None)
- grad_penalty_loocv(params, penalty, idx=None)
- loocv_GN(params, penalty, idx=None)
- loocv_loss(params, penality, idx=None)
- setInferenceStats(alpha=0.05)
- set_betas_inner()
- set_params(unconstrained, transform=True)
- unconstrained_GN(x, idx=None)
- unconstrained_grad(x, idx=None)
- unconstrained_loss(x, idx=None)